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Abstract— In modern digital systems large capacity and data transfer rate is required. Synchronous DRAM (SDRAM) become the memory 

of choice due to its speed, burst access and pipeline features. A Controller is required to provide proper commands for SDRAM 

initialization, read/write accesses and memory refresh. In Synchronous DRAM memories data errors may occur due alpha particles. To 

ensure reliable data storage, an error correction and detection scheme is required. This paper describes the design  and characterization of 

SDRAM Controller IP core with built in Refined Error Correcting Codes (ECC) module. The refined ECC module uses improved Hamming 

code which has a better performance than the conventional Hamming code. The design is described using Verilog HDL, simulated using 

ModelSim and prototyped in Altera® platform FPGA. Resource utilization and power analysis was done using Altera® Quartus II. Hardware 

test results are obtained from Signal Tap Logic Analyzer. 

Index Terms — Error Correcting Codes, Error Correction, Error Detection, IP core, Power analysis, Resource utilization, Synchronous 

DRAM.   

——————————      —————————— 

1 INTRODUCTION                                                                     

 ynchronous DRAMs (SDRAMs) become the memory of 

choice in many digital systems because it provides a 

significant improvement in bandwidth performance over 

traditional asynchronous DRAMs such as "FPM" (Fast Page 

Mode) and "EDO" (Extended Data Out) [6]. In Synchronous 

DRAMs input address, data, and control signals are typi-

cally latched on the positive edge of the clock signal. 

SDRAMs offer several features such as multiple internal 

banks, burst mode access, and pipelining of operation exe-

cutions, that helps to improve bandwidth performance.  

There are two popular types of SDRAM in market. The 

most common single data rate (SDR) SDRAM transfers da-

ta typically on the rising edge of the clock. The other is the 

double data rate (DDR) SDRAM [5] which transfers data on 

both the rising and falling edge to double the data transfer 

throughput. Other than the data transfer phase, the differ-

ent power-on initialization and mode register definitions; 

these two SDRAMs share the same command set and basic 

design concepts. This paper describes a design that is tar-

geted for SDR SDRAM. However, due to the similarity of 

SDR and DDR SDRAM, this design can also be adapted for 

a DDR SDRAM controller.  

As the dimensions and operating voltages of electronic 

components are reduced, their sensitivity to radiation in-

creases dramatically[9]. The alpha particles emitted by 

trace uranium and thorium impurities in packaging mate-

rials were the dominant cause of soft errors in SDRAM de-

vices. Improved Hamming code Error Correction [7] is 

used in the proposed controller to provide Single Error 

Correction and Double Error Detection.  

For benchmarking purpose, the Micron® SDR SDRAM 

MT48LC8M16A2 [4] is chosen as a target for this design. 

The target memory is a 16-bit memory. But, by the intro-

duction of error correction feature, the width of data bus is 

reduced to 10 bits. Also, this design has been verified by 

using memory simulation model.  

The section 2 of this paper is a tutorial review of Syn-

chronous DRAMs. The section 3 describes the design of the 

proposed SDRAM Controller with refined ECC module. 

The section 4 describes the simulation results. The section 5 

describes the implementation results of the proposed con-

troller. 

2 SYNCHRONOUS DRAM REVIEW 

 

SDRAM, or Synchronous Dynamic Random Access 

Memory is a form of semiconductor memory that can run 

at faster speeds than conventional DRAM. Since SDRAM 

has a synchronous interface, it has an internal finite state 

S 
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machine that pipelines incoming instructions. Thus the 

speed of operation is much higher.  

     As a result of the multiple banks present and pipelining 

feature, SDRAM is capable of keeping two sets of memory 

addresses open simultaneously thereby it cuts down the 

delays associated with asynchronous RAM, which must 

close one address bank before opening the next. The term 

pipelining is used to describe the process whereby the 

SDRAM can accept a new instruction before it has finished 

processing the previous one. Another important feature of 

SDRAM is its facility for burst read and burst write[4].       

 The Micron® 128Mb [4] SDRAM referenced in this 

paper is a high-speed CMOS, dynamic random access 

memory containing 134,217,728 bits. It is internally config-

ured as a quad-bank DRAM with a synchronous interface. 

Each of the 33,554,432-bit banks is organized as 4,096 rows 

by 512 columns by 16 bits. The 128Mb SDRAM is designed 

to operate in 3.3V memory systems. All inputs and outputs 

are LVTTL-compatible.  

3 PROPOSED CONTROLLER DESIGN 

 
3.1 Introduction 

 

The proposed SDRAM Controller is designed to work with 

a standard memory from Micron Technology® with series 

MT48LC8M16A2™. It has a user interface end on one side 

and 128Mb SDRAM on the other end. The design is coded 

in Verilog HDL. The controller offers facility for program-

mable burst lengths of 1, 2, 4, and 8, programmable CAS 

latency of 2 and 3.  

Initialization should be done before applying any nor-

mal operation. Read and Write should be performed only 

after the initialization. The proposed controller design au-

tomatically performs all the initialization procedures[1,2,4].  

The alpha particles emitted by trace uranium and thori-

um impurities in packaging materials were the dominant 

cause of soft errors in SDRAM devices. The alpha particle is 

composed of two neutrons and two protons—a doubly ion-

ized helium atom emitted from the nuclear decay of unsta-

ble isotopes [9]. The most common source of alpha particles 

are from the naturally occurring 238U, 235U, and 232Th. These 

impurities emit alpha particles at specific discrete energies 

over a range from 4 to 9 MeV. When an alpha particle trav-

els through a material, it loses its kinetic energy predomi-

nantly through interactions with the electrons of that mate-

rial and thus leaves a trail of ionization in its wake. The 

higher the energy of the alpha particle, the farther it travels 

before being “stopped” by the material. Alpha particles 

from outside the packaged device are clearly not a con-

cern—only alpha particles emitted by the device materials 

and packaging materials need be considered. Other than 

alpha particles, the reaction of high-energy cosmic neu-

trons with silicon and other device materials and the reac-

tion of low-energy cosmic neutrons with high concentra-

tions of 10B in the device can cause data errors leading to 

failures in electronic devices [9].  

Improved Hamming code is used to provide Single Er-

ror Correction and Double Error Detection [7]. Refined 

ECC block consists of encoder and decoder-corrector, 

which can detect and correct single-bit errors and detect 

double-bit errors.  
 

3.2 Block Diagram 
 

The block diagram of proposed SDRAM Controller is 

shown in Fig. 1. The main function of the controller is to 

convert user commands to commands that can be under-

standable by the memory [6]. Another is to detect and cor-

rect single-bit errors and detect double-bit errors[3]. The 

main blocks include datapath, finite state machine, initiali-

zation control block and ECC block. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 1  Controller block diagram 

 

The inputs like command (cmd) and reset are collective-

ly shown as control input. The memory address is given 

through the address input. The data during write operation 

is given through the data input. Data during read operation 

is obtained through data output. Error status is also ob-

tained as an output.  
 

3.3 Pin Description 
       

The input output diagram of controller is shown in 

Fig.  2.  
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Fig. 2  Pin out diagram of controller 

 

Type and the function of all the pins are described 

in table I. 
TABLE 1 

PIN DESCRIPTION 

PIN TYPE DESCRIPTION 
Sys Clk Input Input clock to the controller. Used to 

generate the clock (clk) to the memory.  

Reset Input System reset - Used to reset the total 

system.  

Cmd 

[2:0]; 

Input Command input which distinguishes 

between different operations like Pre-

charge, refresh, load mode register, 

active, read and write.  

Data in 

[9:0] 

Input 10-bit data input to the controller which 

is used as data during write operation.  

Data out 

[9:0] 

Output  10-bit data output from the controller 

during  read operation.  

Addr 

[22:0] 

Input  23-bit Address bus. From this 23-bit 

address row address, column address 

and bank address is decoded.  

Dm [1:0] Input  Dm is used to generate the mask signal 

for the memory (Dqm).   

Clk Output  CLK is generated by the controller. This 

clock is given as the clock input to the 

memory. Typical values are 100MHz and 

133MHz.  

Saddr 

[11:0] 

 Address input A0–A11 are sampled 

during the ACTIVE command (row 

address A0–A11) and READ/WRITE 

command (column-address  A0–A8). 

Ba [1:0] Output Bank address is used to select the bank 

Cke Output CKE activates (HIGH) and deactivates 

(LOW) the CLK signal.  

Csn Output CS enables (LOW) and disables (HIGH) 

the command decoder. All commands  

are masked when CS is registered HIGH. 

Rasn Output Command inputs WE, CAS, and RAS 

Casn Output (along with CS) define the command 

being entered. Wen Output 

Error 

[1:0] 

Output Error is the output signal used to display 

the error status. If it is “00”, no error has 

occurred. If it is “10”, single-bit error has 

occurred and corrected. If it is “01”, 

double-bit error has occurred and not 

corrected. Value “11” is not possible 

Dqm 

[1:0] 

Output DQM is an output mask signal for write 

accesses and an output enable signal for 

read accesses. Input data to the memory 

is masked when DQM is sampled HIGH 

during a WRITE cycle. The output buff-

ers are placed in a High-Z state (2-clock 

latency) when DQM is sampled HIGH 

during a READ cycle. DQM is generated 

from Dm signal. 

Dq [15:0] Inout  Bidirectional data bus which is connected 

to the bidirectional data bus of memory. 

During write operation Dq is directed 

from controller to the memory. During 

read operation Dq is directed from 

memory to the controller 

 
3.4 Initialization Control State Machine 

 

According to architecture and working principle of 

SDRAM [4], the controller design uses two Finite State Ma-

chines to implement timing-logic control [1,2]. The SDRAM 

must be powered up and initialized in a predefined man-

ner before any normal operation. Automatic initialization is 

carried out by this state machine. The main processes in 

initialization is shown in Fig. 3.  
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 3  Initialization Process Flow 

 

Initialization process[4] consist of sequence of op-

erations. First Precharge all banks(PRE) should be done. 

Precharging is required to deactivate all banks and put 

them in idle state. After precharging wait for tRP (150 ns) 

period and execute Auto Refresh(REF). After autorefresh 

wait for tRFC (495 ns) period and again apply Auto Refresh. 

Again wait for tRFC period and then Load Mode Regis-

ter(LMR) command should be issued. With this command 
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some special attributes are set (i.e. burst packet length , ac-

cess type,  CAS latency and other). Then wait for tMRD (15 

ns) period. After the initialization, the SDRAM goes into 

the idle state, which is the initial  state of the main FSM 

which is explained below.  
 

3.5 Main Finite State Machine 
 

Another state machine is the main FSM or the core of the 

controller which is shown in Fig. 4. Enable signal of this 

FSM is generated by the initialization block. This ensures 

that initialization is complete before normal operation. The 

FSM generates control signals corresponding to the state. 

Transition between different states is according to the 

command input.   

The controller awakens in the IDLE state and then 

changes to Precharge All, Precharge Selected, Load Mode 

Register, AutoRefresh, or Active depending on the system 

command. The dashed lines in the state machine diagram 

indicate the automatic transfer. For Read and Write, the 

controller first goes into Active state. During active state 

row address and bank address is decoded from the address 

input. Controller enters write state when command is 110 

and read state when command is 111.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 4  Main Finite State Machine 

 

 

 

3.6 Datapath Circuit 
 

The data flow design between the SDRAM and the system 

interface is shown in Fig. 5. The datapath circuit consists of 

four number of 16-bit D flip flops and a tristate buffer. Flip 

flop is used to shift the data. The data passing through the 

datapath circuit is either the codeword from the ECC En-

coder or codeword from the memory. Tristate buffer is used 

to determine the direction of bidirectional data bus. Tri 

state buffer has a control input “oe” which determines 

whether it is a read or write operation. It is obtained as an 

output from the main finite state machine.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 5  Datapath Circuit 

 

3.7 Error Correcting Codes (ECC) Block 
 

Hamming Code with additional parity bit can be used to 

detect and correct single-bit errors and detect double-bit 

errors [7], [8]. It is relatively simple yet powerful ECC code. 

It involves transmitting data with multiple check bits (pari-

ty) and decoding the associated check bits when receiving 

data to detect errors.  

In conventional Hamming code redundancy bits are to 

be interspersed in powers-of-two positions at the transmit-

ter end. At the receiver these redundancy bits are to be ex-

tracted from the powers-of-two positions. In improved 

Hamming code the redundancy bits are placed at the end 

of data bits [7]. This eliminates the overhead of interspers-

ing redundancy bits at the sender end and their removal 

later at the receiver end. Further the overhead bits involved 

in the process of calculation of redundancy bits is lower in 

improved Hamming code [7]. Refined ECC block compris-

es an encoder and a decoder-corrector which can detect 

and correct single-bit errors and detect double-bit errors.   
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The number of redundancy bits in this method is same 

as that for conventional Hamming code for some values of 

n. But in some cases, it will be just one more redundancy 

bit than needed in the Hamming code [7]. The number of 

redundancy bits, ‘r’ to be appended to n-bit data to obtain 

single error correction is according to equation 1. For ex-

ample, if the available space for codeword is only 16 bits, 

then data bit should be only 11 bit wide and the number of 

redundancy bits will be 5 to obtain single error correction.  

n)(r  12 1
 (1) 

To obtain single error correction and double error de-

tection one extra redundancy bit is required. This bit is all 

over all parity bit, which checks the parity of all the data 

bits and the redundancy bits. For example, if the available 

space for codeword is only 16 bits, then data bit should be 

only 10 bit wide and the number of redundancy bits will be 

6 to obtain single error correction and double error detec-

tion. These six bits are placed at locations 15, 14, 13, 12, 11 

and 10.  

The target memory is 16 bit wide. Therefore sum of da-

ta bits and parity bits should not exceed 16 bits. 16-bit 

codeword can provide error correction and detection to 10-

bit data. For an 10-bit message there are 10 possible single-

bit errors. Hamming codeword is a concatenation of the 

original data and the parity bits.  

ECC block comprises ECC encoder and ECC decoder-

corrector. Encoder converts the 10-bit input message into 

16-bit codeword by calculating and placing parity bits at 

the end positions. This 16-bit codeword is stored in the 

memory. Decoder- corrector detects any error in the re-

ceived codeword by calculating syndrome bits and corrects 

single-bit errors by using a mask. The internal structure of 

ECC block is given in Fig. 6.   
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Fig. 6  ECC Block Diagram 

 

 

ECC Encoder 
 

The encoder takes the 10-bit input data and encodes 

the message into a (10 + 6) bit codeword. The process flow 

of encoder is shown in Fig. 7. The parity bits are calculated 

according to the equations derived from the truth table 

given in table 2.  

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7  Encoder Process Flow Chart 

 
TABLE 2 

TRUTH TABLE 

Bit position of 

data 
P[3] P[2] P[1] P[0] 

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 0 0 

5 0 1 0 1 

6 0 1 1 0 

7 0 1 1 1 

8 1 0 0 0 

9 1 0 0 1 

10 1 0 1 0 

 

P[0] is having value ‘1’ at bit locations 1, 3, 5, 7 and 9. 

Therefore P[0] is selected such that there is even parity at 

these positions (XXX1 <= 10) [7]. P[1] is selected such that 

there is even parity at positions 2, 3, 6, 7 and 10 (XX1X <= 

10). P[2] is selected such that there is even parity at posi-

tions 4, 5, 6 and 7 (X1XX <= 10). P[3] is selected such that 

there is even parity at positions 8, 9 and 10 (1XXX <= 10). 

P[4] is selected such that there is even parity at the bit posi-

tions of redundancy bits P[3:0]. P[5] is selected such that 

there is even parity at all the bit positions including the 

redundancy bits P[4:0]. These parity bits P[5:0] are inter-

spersed in positions 15, 14, 13, 12, 11 and 10 respectively. 

For the calculation of parity bits, even parity checks were 

performed on 5, 5, 4, 3, 4 & 16 bits respectively. Thus a total 
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of 37 bits are involved in the process of hamming bits cal-

culation. The codeword format for a sample data 

10’b1100110011 is shown in Fig. 8. Parity bits are shown in 

bold format. This codeword is transmitted or stored in the 

memory. 

 

0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Fig. 8  Codeword Format 

 

ECC Decoder 
 

Decoder creates syndrome bits through a series of process-

es. The process flow of decoder is given in Fig. 9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 9  Decoder Process Flow Chart 

 

At the receiver end, the parity bits are removed. A pari-

ty check is done between the transmitted parity and parity 

of the received codeword. The result of comparison deter-

mines the nature of error. If single bit error has been oc-

curred, then a mask will be generated and the data will be 

corrected.  

During read operation datapath receives data from the 

memory. Decoder receives this data from datapath. This 

data represents the codeword corresponding to the actual 

message. Decoder extracts the redundancy bits (check bits) 

from the end positions. Then it calculates the parity bits 

corresponding to the received data. It compares the check 

bits and the parity bits and generates a syndrome. The 

syndrome calculation is done according to the equation 2 

 

ParityCheckSyndrome   (2) 

The syndrome bits are placed at the end of the data re-

placing the parity bits. This data is given to the corrector.  
 
ECC Corrector 
 

The corrector module is responsible for error diagnosis and 

error correction. Principle of error diagnosis and error cor-

rection is explained below [7]. The process flow of corrector 

is given in Fig. 10.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10  Corrector Process Flow Chart 

 

The first step of the ECC-Corrector is the extraction of 

syndrome bits from the received data. By extracting syn-

drome bits, separation of redundancy bits and data bits 

takes place. The decoder then compares the syndrome val-

ue against values in the syndrome Look Up Table (LUT). 

The status of error depends upon the value of syndrome. If 

S[5:0] is 5’b00000, no error has occurred. If S[5] is “0” and 

S[4:0] is not equal to “0000”, double error has occurred. If 

S[5] is “1”, single error has occurred and the value of S[3:0] 

indicates the position holding error bit. All the single-bit 

errors are located and corrected. Double-bit errors are de-

tected and not corrected. Some examples of received code-

word and the interpretation of error are illustrated in table 

3.  
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TABLE 3 
ERROR DETECTION AND CORRECTION USING IMPROVED HAMMING 

CODE 

Received information 

including Hamming bits 

Status of 

parity 

check 

Conclusion 

0000111100110011 000000 No Error 

0000111100110111 100011 
Single Error at 

position 2 

0000111000110011 101010 
Single Error at 

position 9 

 

The next step in the corrector process flow is the mask 

generation and correction. Mask is generated only when 

the error is diagnosed as single-bit error. Depending upon 

the location of error, mask varies.  For example if single bit 

error has occurred in 0th position, generated mask will be 

“0000000001”. Separated data bits are XORed with mask to 

obtain the corrected data according to the equation 3 .   
 

Corrected Output Data = Mask ^ Decoded Data (3) 
 

A separate 2-bit output pin is given for the controller to 

indicate the status of error. Conditions of error output pins 

and the status of error is given in table 4.  

TABLE 4 
ERROR STATUS TABLE 

Error[1] Error[0] Diagnosis 

0 0 There is no error on the message on 
the output. 

1 0 There was one error on the code-
word the message is equivalent to 
the original. 

0 1 There are two errors on the code-
word no correction have been made. 

1 1 Not possible. 

 
Comparison of Improved Hamming Code with Conven-
tional Hamming Code 

 

The error correction using improved Hamming code has 

reduced the computational complexity [7]. The overhead 

bits involved in the process of calculation of redundancy 

bits are lower in improved Hamming code. The table 5 

shows the values of overhead bits for both methods and the 

calculated percentage reduction of overhead bits in im-

proved Hamming code error correction method. Compari-

son is done using Matlab plot shown in Fig. 11.  

 

 

TABLE 5 
COMPARISON TABLE 

Data 

bits 

Parity 

bits 

Overhead bits % reduc-

tion in 

overhead 

bits 

Conventional 

Hamming 

code 

Improved 

Hamming 

code 

4 4 19 13 31.57% 

8 5 37 27 27.02% 

16 6 69 57 17.39% 

32 7 138 123 10.87% 

 

 

 
 

Fig. 11  Comparison Chart 

 

In Fig. 11, comparison of overhead bits in case of con-

ventional Hamming code and improved Hamming code is 

shown. Overhead bits are plotted against message width. 

Upper line indicates the overhead bits for conventional 

Hamming code and the lower line indicates the overhead 

bits for improved Hamming code.  

4 SIMULATION RESULTS 

 

The Controller along with memory can be simulated using 

Modelsim software. The functional simulation result of the 

wrapper module is shown in Fig. 12. The designed IP core 

can be further prototyped using Altera DE2 FPGA 

board[10].  
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Fig. 12  Simulation result 

 
Note on simulation result :  

 
Reset : (sys_clk = 1’b1, clk = 1’b1, reset = 1’b1, cmd = 3’bxxx, 
dm = 2’bxx, data_in = 10’bxxxxxxxxxx,  addr = 
23’bxxxxxxxxxxxxxxxxxxxxxxx, data_out = 10’bzzzzzzzzzz, 
error = 2’b00) 
Initialization : (sys_clk = 1’b1, clk = 1’b1, reset = 1’b0,  cmd = 
3’bxxx, dm = 2’bxx, data_in = 10’bxxxxxxxxxx, 
addr=23’b00000000000000000100000, data_out = 10’b 
zzzzzzzzzz, error = 2’b00) 
Activate : (sys_clk = 1’b1, clk = 1’b1, reset = 1’b0, cmd = 
3’b101, dm = 2’b00, data_in = 10’bxxxxxxxxxx, addr = 
23’b00000000000000000000000, data_out = 10’b zzzzzzzzzz, 
error = 2’b00) 
Write : (sys_clk = 1’b1, clk = 1’b1, reset = 1’b0, cmd = 3’b110, 
dm = 2’b00, data_in = 10’b1100110011, addr = 
23’b00000000000000000000000, data_out = 10’b zzzzzzzzzz, 
error = 2’b00) 
Activate : (sys_clk = 1’b1, clk = 1’b1, reset = 1’b0, cmd = 
3’b101, dm = 2’b00, data_in = 10’b zzzzzzzzzz, addr = 
23’b00000000000000000000000, data_out = 10’bxxxxxxxxxx, 
error = 2’b00) 
Read : (sys_clk = 1’b1, clk = 1’b1, reset = 1’b0, cmd = 3’b111, 
dm = 2’b00, data_in = 10’bzzzzzzzzzz,  addr = 
23’b00000000000000000000000, data_out = 10’b1100110011, 
error = 2’b00) 
 

5 IMPLEMENTATION RESULTS 

 

The controller module is tested by using Altera® DE2 

FPGA board. Sys_clk is taken from the board itself. Reset is 

given as trigger input. Altera Quartus® II is used to synthe-

sis the design. Signal Tap® II Logic Analyzer is used to take 

hardware test result from FPGA which is shown in Fig. 13. 

Power analysis and Resource utilization result is listed in 

table 6 and table 7 respectively.  

 

 
Fig. 13  Hardware test result 

 

Power Analysis table in table 6 gives details about the 

core dynamic thermal power dissipation, core static ther-

mal power dissipation, I/O thermal power dissipation and 

total thermal power dissipation.  

TABLE 6 
POWER ANALYSIS TABLE 

PARAMETER  RESULT  

Total Thermal Power Dissipa-

tion  

115.89 mW  

Core Dynamic Thermal Pow-

er Dissipation  

0.00 mW   

Core Static Thermal Power 

Dissipation  

79.94 mW  

I/O Thermal Power Dissipa-

tion  

35.94 mW  

 

Resource Utilization table summarizes usage statis-

tics for resources including logic elements, registers, I/O 

pins, memory blocks, interconnect usage, and fan-out. 

TABLE 7 
RESOURCE UTILIZATION TABLE 

RESOURCE  USAGE  

Estimated Total logic elements  1,376  

Total combinational functions  686  

Logic element usage by number of 
LUT inputs  

 

                 -- 4 input functions  374 

                 -- 3 input functions  180  

                 -- 2 input functions  132  

Logic elements by mode   

                 -- normal mode  646  

                 -- arithmetic mode  40   
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Total registers  1117 

                 -- Dedicated logic registers  1117  

                 -- I/O registers  0  

I/O pins  51 

Total memory bits  6272  

Maximum fan-out node  clock  

Maximum fan-out  785 

Total fan-out  6338  

Average fan-out  3.32 

 

CONCLUSION 

 
This paper describes the the design, simulation and charac-
terization of synthesizable SDRAM Controller IP core with 
built in refined ECC module. Improved Hamming code 
error correction which is used in this design reduces the 
overhead bits in the process of calculation of redundancy 
bits when compared with the conventional Hamming code. 
The design was developed using Verilog HDL. It can be 
easily modified for different system design requirements. 
The proposed design has been tested by implementing the 
design on Altera DE2 board which uses Cyclone-II device. 
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