
International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Design and Characterization of SDRAM
Controller IP Core with Built In Refined ECC

Module
Arathy S, Nandakumar R, Hima Sara Jacob

Abstract— In modern digital systems large capacity and data transfer rate is required. Synchronous DRAM (SDRAM) become the memory

of choice due to its speed, burst access and pipeline features. A Controller is required to provide proper commands for SDRAM

initialization, read/write accesses and memory refresh. In Synchronous DRAM memories data errors may occur due alpha particles. To

ensure reliable data storage, an error correction and detection scheme is required. This paper describes the design and characterization of

SDRAM Controller IP core with built in Refined Error Correcting Codes (ECC) module. The refined ECC module uses improved Hamming

code which has a better performance than the conventional Hamming code. The design is described using Verilog HDL, simulated using

ModelSim and prototyped in Altera® platform FPGA. Resource utilization and power analysis was done using Altera® Quartus II. Hardware

test results are obtained from Signal Tap Logic Analyzer.

Index Terms — Error Correcting Codes, Error Correction, Error Detection, IP core, Power analysis, Resource utilization, Synchronous

DRAM.

—————————— ——————————

1 INTRODUCTION

 ynchronous DRAMs (SDRAMs) become the memory of

choice in many digital systems because it provides a

significant improvement in bandwidth performance over

traditional asynchronous DRAMs such as "FPM" (Fast Page

Mode) and "EDO" (Extended Data Out) [6]. In Synchronous

DRAMs input address, data, and control signals are typi-

cally latched on the positive edge of the clock signal.

SDRAMs offer several features such as multiple internal

banks, burst mode access, and pipelining of operation exe-

cutions, that helps to improve bandwidth performance.

There are two popular types of SDRAM in market. The

most common single data rate (SDR) SDRAM transfers da-

ta typically on the rising edge of the clock. The other is the

double data rate (DDR) SDRAM [5] which transfers data on

both the rising and falling edge to double the data transfer

throughput. Other than the data transfer phase, the differ-

ent power-on initialization and mode register definitions;

these two SDRAMs share the same command set and basic

design concepts. This paper describes a design that is tar-

geted for SDR SDRAM. However, due to the similarity of

SDR and DDR SDRAM, this design can also be adapted for

a DDR SDRAM controller.

As the dimensions and operating voltages of electronic

components are reduced, their sensitivity to radiation in-

creases dramatically[9]. The alpha particles emitted by

trace uranium and thorium impurities in packaging mate-

rials were the dominant cause of soft errors in SDRAM de-

vices. Improved Hamming code Error Correction [7] is

used in the proposed controller to provide Single Error

Correction and Double Error Detection.

For benchmarking purpose, the Micron® SDR SDRAM

MT48LC8M16A2 [4] is chosen as a target for this design.

The target memory is a 16-bit memory. But, by the intro-

duction of error correction feature, the width of data bus is

reduced to 10 bits. Also, this design has been verified by

using memory simulation model.

The section 2 of this paper is a tutorial review of Syn-

chronous DRAMs. The section 3 describes the design of the

proposed SDRAM Controller with refined ECC module.

The section 4 describes the simulation results. The section 5

describes the implementation results of the proposed con-

troller.

2 SYNCHRONOUS DRAM REVIEW

SDRAM, or Synchronous Dynamic Random Access

Memory is a form of semiconductor memory that can run

at faster speeds than conventional DRAM. Since SDRAM

has a synchronous interface, it has an internal finite state

S

————————————————

 Arathy S is currently pursuing masters degree program in VLSI and Em-
bedded System in Saintgits College of Engineering,Kottayam, Kerala, In-
dia. E-mail: arathysnair89@gmail.com

 Nandakumar R is Scientist/Engineer B at National Institute of Electronics
and Information Technology, Calicut, Kerala, India.
E-mail : nanda24x7@gmail.com

 Hima Sara Jacob is currently pursuing masters degree program in VLSI
and Embedded System in Saintgits College of Engineering, Kottayam, Ker-
ala, India. E-mail: hima.sara24@gmail.com

mailto:arathysnair89@gmail.com
mailto:nanda24x7@gmail.com

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

machine that pipelines incoming instructions. Thus the

speed of operation is much higher.

 As a result of the multiple banks present and pipelining

feature, SDRAM is capable of keeping two sets of memory

addresses open simultaneously thereby it cuts down the

delays associated with asynchronous RAM, which must

close one address bank before opening the next. The term

pipelining is used to describe the process whereby the

SDRAM can accept a new instruction before it has finished

processing the previous one. Another important feature of

SDRAM is its facility for burst read and burst write[4].

 The Micron® 128Mb [4] SDRAM referenced in this

paper is a high-speed CMOS, dynamic random access

memory containing 134,217,728 bits. It is internally config-

ured as a quad-bank DRAM with a synchronous interface.

Each of the 33,554,432-bit banks is organized as 4,096 rows

by 512 columns by 16 bits. The 128Mb SDRAM is designed

to operate in 3.3V memory systems. All inputs and outputs

are LVTTL-compatible.

3 PROPOSED CONTROLLER DESIGN

3.1 Introduction

The proposed SDRAM Controller is designed to work with

a standard memory from Micron Technology® with series

MT48LC8M16A2™. It has a user interface end on one side

and 128Mb SDRAM on the other end. The design is coded

in Verilog HDL. The controller offers facility for program-

mable burst lengths of 1, 2, 4, and 8, programmable CAS

latency of 2 and 3.

Initialization should be done before applying any nor-

mal operation. Read and Write should be performed only

after the initialization. The proposed controller design au-

tomatically performs all the initialization procedures[1,2,4].

The alpha particles emitted by trace uranium and thori-

um impurities in packaging materials were the dominant

cause of soft errors in SDRAM devices. The alpha particle is

composed of two neutrons and two protons—a doubly ion-

ized helium atom emitted from the nuclear decay of unsta-

ble isotopes [9]. The most common source of alpha particles

are from the naturally occurring 238U, 235U, and 232Th. These

impurities emit alpha particles at specific discrete energies

over a range from 4 to 9 MeV. When an alpha particle trav-

els through a material, it loses its kinetic energy predomi-

nantly through interactions with the electrons of that mate-

rial and thus leaves a trail of ionization in its wake. The

higher the energy of the alpha particle, the farther it travels

before being “stopped” by the material. Alpha particles

from outside the packaged device are clearly not a con-

cern—only alpha particles emitted by the device materials

and packaging materials need be considered. Other than

alpha particles, the reaction of high-energy cosmic neu-

trons with silicon and other device materials and the reac-

tion of low-energy cosmic neutrons with high concentra-

tions of 10B in the device can cause data errors leading to

failures in electronic devices [9].

Improved Hamming code is used to provide Single Er-

ror Correction and Double Error Detection [7]. Refined

ECC block consists of encoder and decoder-corrector,

which can detect and correct single-bit errors and detect

double-bit errors.

3.2 Block Diagram

The block diagram of proposed SDRAM Controller is

shown in Fig. 1. The main function of the controller is to

convert user commands to commands that can be under-

standable by the memory [6]. Another is to detect and cor-

rect single-bit errors and detect double-bit errors[3]. The

main blocks include datapath, finite state machine, initiali-

zation control block and ECC block.

Fig. 1 Controller block diagram

The inputs like command (cmd) and reset are collective-

ly shown as control input. The memory address is given

through the address input. The data during write operation

is given through the data input. Data during read operation

is obtained through data output. Error status is also ob-

tained as an output.

3.3 Pin Description

The input output diagram of controller is shown in

Fig. 2.

CONTROLLER

REFINED ECC

BLOCK

ENCODER

DECODER

CORECTOR

Error
Status

Data
Output

Sys clk

Control
Input

Address
Input

Data
Input

Internal

Data

Bus

Address
Bus

Control

SDRAM

INITIALIZATION

CONTROL STATE

MACHINE

STATE MACHINE

DATAPATH

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Fig. 2 Pin out diagram of controller

Type and the function of all the pins are described

in table I.
TABLE 1

PIN DESCRIPTION

PIN TYPE DESCRIPTION
Sys Clk Input Input clock to the controller. Used to

generate the clock (clk) to the memory.

Reset Input System reset - Used to reset the total

system.

Cmd

[2:0];

Input Command input which distinguishes

between different operations like Pre-

charge, refresh, load mode register,

active, read and write.

Data in

[9:0]

Input 10-bit data input to the controller which

is used as data during write operation.

Data out

[9:0]

Output 10-bit data output from the controller

during read operation.

Addr

[22:0]

Input 23-bit Address bus. From this 23-bit

address row address, column address

and bank address is decoded.

Dm [1:0] Input Dm is used to generate the mask signal

for the memory (Dqm).

Clk Output CLK is generated by the controller. This

clock is given as the clock input to the

memory. Typical values are 100MHz and

133MHz.

Saddr

[11:0]

 Address input A0–A11 are sampled

during the ACTIVE command (row

address A0–A11) and READ/WRITE

command (column-address A0–A8).

Ba [1:0] Output Bank address is used to select the bank

Cke Output CKE activates (HIGH) and deactivates

(LOW) the CLK signal.

Csn Output CS enables (LOW) and disables (HIGH)

the command decoder. All commands

are masked when CS is registered HIGH.

Rasn Output Command inputs WE, CAS, and RAS

Casn Output (along with CS) define the command

being entered. Wen Output

Error

[1:0]

Output Error is the output signal used to display

the error status. If it is “00”, no error has

occurred. If it is “10”, single-bit error has

occurred and corrected. If it is “01”,

double-bit error has occurred and not

corrected. Value “11” is not possible

Dqm

[1:0]

Output DQM is an output mask signal for write

accesses and an output enable signal for

read accesses. Input data to the memory

is masked when DQM is sampled HIGH

during a WRITE cycle. The output buff-

ers are placed in a High-Z state (2-clock

latency) when DQM is sampled HIGH

during a READ cycle. DQM is generated

from Dm signal.

Dq [15:0] Inout Bidirectional data bus which is connected

to the bidirectional data bus of memory.

During write operation Dq is directed

from controller to the memory. During

read operation Dq is directed from

memory to the controller

3.4 Initialization Control State Machine

According to architecture and working principle of

SDRAM [4], the controller design uses two Finite State Ma-

chines to implement timing-logic control [1,2]. The SDRAM

must be powered up and initialized in a predefined man-

ner before any normal operation. Automatic initialization is

carried out by this state machine. The main processes in

initialization is shown in Fig. 3.

Fig. 3 Initialization Process Flow

Initialization process[4] consist of sequence of op-

erations. First Precharge all banks(PRE) should be done.

Precharging is required to deactivate all banks and put

them in idle state. After precharging wait for tRP (150 ns)

period and execute Auto Refresh(REF). After autorefresh

wait for tRFC (495 ns) period and again apply Auto Refresh.

Again wait for tRFC period and then Load Mode Regis-

ter(LMR) command should be issued. With this command

SDRAM

CONTROLLER

Sys_clk

Reset

Cmd[2:0]

Addr[22:0]

Data in[9:0]

Dm[1:0]

Clk

Saddr[11:0]

Ba[1:0]

Data out[9:0]

Dqm[1:0]

Cke

Csn

Rasn

Casn

Wen

Dq[15:0]

SDRAM Controller

Error[1:0]

PRE START Wait tRP REF

REF

LMR Wait tMRD

Wait tRFC Wait tRFC

STOP

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

some special attributes are set (i.e. burst packet length , ac-

cess type, CAS latency and other). Then wait for tMRD (15

ns) period. After the initialization, the SDRAM goes into

the idle state, which is the initial state of the main FSM

which is explained below.

3.5 Main Finite State Machine

Another state machine is the main FSM or the core of the

controller which is shown in Fig. 4. Enable signal of this

FSM is generated by the initialization block. This ensures

that initialization is complete before normal operation. The

FSM generates control signals corresponding to the state.

Transition between different states is according to the

command input.

The controller awakens in the IDLE state and then

changes to Precharge All, Precharge Selected, Load Mode

Register, AutoRefresh, or Active depending on the system

command. The dashed lines in the state machine diagram

indicate the automatic transfer. For Read and Write, the

controller first goes into Active state. During active state

row address and bank address is decoded from the address

input. Controller enters write state when command is 110

and read state when command is 111.

Fig. 4 Main Finite State Machine

3.6 Datapath Circuit

The data flow design between the SDRAM and the system

interface is shown in Fig. 5. The datapath circuit consists of

four number of 16-bit D flip flops and a tristate buffer. Flip

flop is used to shift the data. The data passing through the

datapath circuit is either the codeword from the ECC En-

coder or codeword from the memory. Tristate buffer is used

to determine the direction of bidirectional data bus. Tri

state buffer has a control input “oe” which determines

whether it is a read or write operation. It is obtained as an

output from the main finite state machine.

Fig. 5 Datapath Circuit

3.7 Error Correcting Codes (ECC) Block

Hamming Code with additional parity bit can be used to

detect and correct single-bit errors and detect double-bit

errors [7], [8]. It is relatively simple yet powerful ECC code.

It involves transmitting data with multiple check bits (pari-

ty) and decoding the associated check bits when receiving

data to detect errors.

In conventional Hamming code redundancy bits are to

be interspersed in powers-of-two positions at the transmit-

ter end. At the receiver these redundancy bits are to be ex-

tracted from the powers-of-two positions. In improved

Hamming code the redundancy bits are placed at the end

of data bits [7]. This eliminates the overhead of interspers-

ing redundancy bits at the sender end and their removal

later at the receiver end. Further the overhead bits involved

in the process of calculation of redundancy bits is lower in

improved Hamming code [7]. Refined ECC block compris-

es an encoder and a decoder-corrector which can detect

and correct single-bit errors and detect double-bit errors.

cmd = 100

cmd = 001

cmd = 101

cmd = 110
cmd = 101

cmd = 111

cmd = 011

cmd = 010

cmd = 101

fsm enable = 1

IDLE

PRECHARGE

SELECTED

LOAD MODE

REGISTER

AUTORE-

FRESH

PRECHARGE

ALL

ACTIVE

WRITE READ

cmd = 000

oe

Data in

 [15:0]

Data out

 [15:0]

 DQ

[15:0]

clk

 D Q D Q

 Q D Q D

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

The number of redundancy bits in this method is same

as that for conventional Hamming code for some values of

n. But in some cases, it will be just one more redundancy

bit than needed in the Hamming code [7]. The number of

redundancy bits, ‘r’ to be appended to n-bit data to obtain

single error correction is according to equation 1. For ex-

ample, if the available space for codeword is only 16 bits,

then data bit should be only 11 bit wide and the number of

redundancy bits will be 5 to obtain single error correction.

n)(r 12 1
 (1)

To obtain single error correction and double error de-

tection one extra redundancy bit is required. This bit is all

over all parity bit, which checks the parity of all the data

bits and the redundancy bits. For example, if the available

space for codeword is only 16 bits, then data bit should be

only 10 bit wide and the number of redundancy bits will be

6 to obtain single error correction and double error detec-

tion. These six bits are placed at locations 15, 14, 13, 12, 11

and 10.

The target memory is 16 bit wide. Therefore sum of da-

ta bits and parity bits should not exceed 16 bits. 16-bit

codeword can provide error correction and detection to 10-

bit data. For an 10-bit message there are 10 possible single-

bit errors. Hamming codeword is a concatenation of the

original data and the parity bits.

ECC block comprises ECC encoder and ECC decoder-

corrector. Encoder converts the 10-bit input message into

16-bit codeword by calculating and placing parity bits at

the end positions. This 16-bit codeword is stored in the

memory. Decoder- corrector detects any error in the re-

ceived codeword by calculating syndrome bits and corrects

single-bit errors by using a mask. The internal structure of

ECC block is given in Fig. 6.

Fig. 6 ECC Block Diagram

ECC Encoder

The encoder takes the 10-bit input data and encodes

the message into a (10 + 6) bit codeword. The process flow

of encoder is shown in Fig. 7. The parity bits are calculated

according to the equations derived from the truth table

given in table 2.

Fig. 7 Encoder Process Flow Chart

TABLE 2

TRUTH TABLE

Bit position of

data
P[3] P[2] P[1] P[0]

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

P[0] is having value ‘1’ at bit locations 1, 3, 5, 7 and 9.

Therefore P[0] is selected such that there is even parity at

these positions (XXX1 <= 10) [7]. P[1] is selected such that

there is even parity at positions 2, 3, 6, 7 and 10 (XX1X <=

10). P[2] is selected such that there is even parity at posi-

tions 4, 5, 6 and 7 (X1XX <= 10). P[3] is selected such that

there is even parity at positions 8, 9 and 10 (1XXX <= 10).

P[4] is selected such that there is even parity at the bit posi-

tions of redundancy bits P[3:0]. P[5] is selected such that

there is even parity at all the bit positions including the

redundancy bits P[4:0]. These parity bits P[5:0] are inter-

spersed in positions 15, 14, 13, 12, 11 and 10 respectively.

For the calculation of parity bits, even parity checks were

performed on 5, 5, 4, 3, 4 & 16 bits respectively. Thus a total

Encoder

Decoder

Corrector

Data In

[9:0]

Reset

Data Out

[9:0]

Codeword

Out

[15:0]

Codeword

In

[15:0]

Calculation of parity bits

Appending parity bits at the end of data bits

START

STOP

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

of 37 bits are involved in the process of hamming bits cal-

culation. The codeword format for a sample data

10’b1100110011 is shown in Fig. 8. Parity bits are shown in

bold format. This codeword is transmitted or stored in the

memory.

0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fig. 8 Codeword Format

ECC Decoder

Decoder creates syndrome bits through a series of process-

es. The process flow of decoder is given in Fig. 9.

Fig. 9 Decoder Process Flow Chart

At the receiver end, the parity bits are removed. A pari-

ty check is done between the transmitted parity and parity

of the received codeword. The result of comparison deter-

mines the nature of error. If single bit error has been oc-

curred, then a mask will be generated and the data will be

corrected.

During read operation datapath receives data from the

memory. Decoder receives this data from datapath. This

data represents the codeword corresponding to the actual

message. Decoder extracts the redundancy bits (check bits)

from the end positions. Then it calculates the parity bits

corresponding to the received data. It compares the check

bits and the parity bits and generates a syndrome. The

syndrome calculation is done according to the equation 2

ParityCheckSyndrome (2)

The syndrome bits are placed at the end of the data re-

placing the parity bits. This data is given to the corrector.

ECC Corrector

The corrector module is responsible for error diagnosis and

error correction. Principle of error diagnosis and error cor-

rection is explained below [7]. The process flow of corrector

is given in Fig. 10.

Fig. 10 Corrector Process Flow Chart

The first step of the ECC-Corrector is the extraction of

syndrome bits from the received data. By extracting syn-

drome bits, separation of redundancy bits and data bits

takes place. The decoder then compares the syndrome val-

ue against values in the syndrome Look Up Table (LUT).

The status of error depends upon the value of syndrome. If

S[5:0] is 5’b00000, no error has occurred. If S[5] is “0” and

S[4:0] is not equal to “0000”, double error has occurred. If

S[5] is “1”, single error has occurred and the value of S[3:0]

indicates the position holding error bit. All the single-bit

errors are located and corrected. Double-bit errors are de-

tected and not corrected. Some examples of received code-

word and the interpretation of error are illustrated in table

3.

Receiving codeword from datapath of the controller

Placing syndrome bits in places of redundancy bits and send-

ing 16-bit data to corrector

Syndrome Generation

Syndrome <=check ^ parity

Parity bit genera-

tion

Check bit genera-

tion

START

STOP

Mask Generation and Correction

Syndrome extraction from decoder output

Error Diagnosis and locating single-bit error

Comparing the value of syndrome against val-

ues in syndrome LUT

START

STOP

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 7

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

TABLE 3
ERROR DETECTION AND CORRECTION USING IMPROVED HAMMING

CODE

Received information

including Hamming bits

Status of

parity

check

Conclusion

0000111100110011 000000 No Error

0000111100110111 100011
Single Error at

position 2

0000111000110011 101010
Single Error at

position 9

The next step in the corrector process flow is the mask

generation and correction. Mask is generated only when

the error is diagnosed as single-bit error. Depending upon

the location of error, mask varies. For example if single bit

error has occurred in 0th position, generated mask will be

“0000000001”. Separated data bits are XORed with mask to

obtain the corrected data according to the equation 3 .

Corrected Output Data = Mask ^ Decoded Data (3)

A separate 2-bit output pin is given for the controller to

indicate the status of error. Conditions of error output pins

and the status of error is given in table 4.

TABLE 4
ERROR STATUS TABLE

Error[1] Error[0] Diagnosis

0 0 There is no error on the message on
the output.

1 0 There was one error on the code-
word the message is equivalent to
the original.

0 1 There are two errors on the code-
word no correction have been made.

1 1 Not possible.

Comparison of Improved Hamming Code with Conven-
tional Hamming Code

The error correction using improved Hamming code has

reduced the computational complexity [7]. The overhead

bits involved in the process of calculation of redundancy

bits are lower in improved Hamming code. The table 5

shows the values of overhead bits for both methods and the

calculated percentage reduction of overhead bits in im-

proved Hamming code error correction method. Compari-

son is done using Matlab plot shown in Fig. 11.

TABLE 5
COMPARISON TABLE

Data

bits

Parity

bits

Overhead bits % reduc-

tion in

overhead

bits

Conventional

Hamming

code

Improved

Hamming

code

4 4 19 13 31.57%

8 5 37 27 27.02%

16 6 69 57 17.39%

32 7 138 123 10.87%

Fig. 11 Comparison Chart

In Fig. 11, comparison of overhead bits in case of con-

ventional Hamming code and improved Hamming code is

shown. Overhead bits are plotted against message width.

Upper line indicates the overhead bits for conventional

Hamming code and the lower line indicates the overhead

bits for improved Hamming code.

4 SIMULATION RESULTS

The Controller along with memory can be simulated using

Modelsim software. The functional simulation result of the

wrapper module is shown in Fig. 12. The designed IP core

can be further prototyped using Altera DE2 FPGA

board[10].

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 8

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Fig. 12 Simulation result

Note on simulation result :

Reset : (sys_clk = 1’b1, clk = 1’b1, reset = 1’b1, cmd = 3’bxxx,
dm = 2’bxx, data_in = 10’bxxxxxxxxxx, addr =
23’bxxxxxxxxxxxxxxxxxxxxxxx, data_out = 10’bzzzzzzzzzz,
error = 2’b00)
Initialization : (sys_clk = 1’b1, clk = 1’b1, reset = 1’b0, cmd =
3’bxxx, dm = 2’bxx, data_in = 10’bxxxxxxxxxx,
addr=23’b00000000000000000100000, data_out = 10’b
zzzzzzzzzz, error = 2’b00)
Activate : (sys_clk = 1’b1, clk = 1’b1, reset = 1’b0, cmd =
3’b101, dm = 2’b00, data_in = 10’bxxxxxxxxxx, addr =
23’b00000000000000000000000, data_out = 10’b zzzzzzzzzz,
error = 2’b00)
Write : (sys_clk = 1’b1, clk = 1’b1, reset = 1’b0, cmd = 3’b110,
dm = 2’b00, data_in = 10’b1100110011, addr =
23’b00000000000000000000000, data_out = 10’b zzzzzzzzzz,
error = 2’b00)
Activate : (sys_clk = 1’b1, clk = 1’b1, reset = 1’b0, cmd =
3’b101, dm = 2’b00, data_in = 10’b zzzzzzzzzz, addr =
23’b00000000000000000000000, data_out = 10’bxxxxxxxxxx,
error = 2’b00)
Read : (sys_clk = 1’b1, clk = 1’b1, reset = 1’b0, cmd = 3’b111,
dm = 2’b00, data_in = 10’bzzzzzzzzzz, addr =
23’b00000000000000000000000, data_out = 10’b1100110011,
error = 2’b00)

5 IMPLEMENTATION RESULTS

The controller module is tested by using Altera® DE2

FPGA board. Sys_clk is taken from the board itself. Reset is

given as trigger input. Altera Quartus® II is used to synthe-

sis the design. Signal Tap® II Logic Analyzer is used to take

hardware test result from FPGA which is shown in Fig. 13.

Power analysis and Resource utilization result is listed in

table 6 and table 7 respectively.

Fig. 13 Hardware test result

Power Analysis table in table 6 gives details about the

core dynamic thermal power dissipation, core static ther-

mal power dissipation, I/O thermal power dissipation and

total thermal power dissipation.

TABLE 6
POWER ANALYSIS TABLE

PARAMETER RESULT

Total Thermal Power Dissipa-

tion

115.89 mW

Core Dynamic Thermal Pow-

er Dissipation

0.00 mW

Core Static Thermal Power

Dissipation

79.94 mW

I/O Thermal Power Dissipa-

tion

35.94 mW

Resource Utilization table summarizes usage statis-

tics for resources including logic elements, registers, I/O

pins, memory blocks, interconnect usage, and fan-out.

TABLE 7
RESOURCE UTILIZATION TABLE

RESOURCE USAGE

Estimated Total logic elements 1,376

Total combinational functions 686

Logic element usage by number of
LUT inputs

 -- 4 input functions 374

 -- 3 input functions 180

 -- 2 input functions 132

Logic elements by mode

 -- normal mode 646

 -- arithmetic mode 40

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 9

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Total registers 1117

 -- Dedicated logic registers 1117

 -- I/O registers 0

I/O pins 51

Total memory bits 6272

Maximum fan-out node clock

Maximum fan-out 785

Total fan-out 6338

Average fan-out 3.32

CONCLUSION

This paper describes the the design, simulation and charac-
terization of synthesizable SDRAM Controller IP core with
built in refined ECC module. Improved Hamming code
error correction which is used in this design reduces the
overhead bits in the process of calculation of redundancy
bits when compared with the conventional Hamming code.
The design was developed using Verilog HDL. It can be
easily modified for different system design requirements.
The proposed design has been tested by implementing the
design on Altera DE2 board which uses Cyclone-II device.

REFERENCES

[1] Tomasz Szymanski, Rafak Kiekbik, Andrzej Napieralski, “SDRAM

controller for real time digital image processing systems.” CAD Sys-

tems in Microelectronics, 2001. CADSM 2001. Proceedings of the 6th

International Conference.

[2] Qiu Daqiang, Hu Bing, Li Dandan ” Design of SDRAM Controller in

High-Speed Data Acquisition Based on PCI Bus.” The Eighth Interna-

tional Conference on Electronic Measurement and Instruments 2007.

[3] Altera ., “DDR and DDR2 SDRAM ECC Reference Design”. 2006.

[4] MICRON Technology Inc., "Synchronous DRAM: MT48LC8M16A2

Data Sheet.“

[5] MICRON Technology Inc., “DOUBLE DATA RATE (DDR) SDRAM:

MT46V32M16 Data Sheet.”

[6] Xilinx Inc., XAPP134 “Synthesizable High Performance SDRAM Con-

troller.” 2000.

[7] Kumar, U.K.; Umashankar, B.S.; , "Improved Hamming Code for Error

Detection and Correction," Wireless Pervasive Computing, 2007. ISWPC

'07. 2nd International Symposium on , vol., no., 5-7 Feb. 2007

doi: 10.1109/ISWPC.2007.342654.

[8] W. Gao and S. Simmons, “A study on the VLSI implementation of

ECC for embedded DRAM,” Electrical and Computer Engineer-

ing,2003. IEEE CCECE 2003. Canadian Conf., Vol. 1, pp. 203-206, May

2003.

[9] Baumann, R.C.; , "Radiation-induced soft errors in advanced semi

conductor technologies," Device and Materials Reliability, IEEE Transac-

tions on , vol.5, no.3, pp. 305- 316, Sept. 2005

doi: 10.1109/TDMR.2005.853449

[10] Altera DE2 Development Board User Manual available online at

ftp://ftp.altera.com/up/pub/Webdocs/DE2_UserManual.pdf

ftp://ftp.altera.com/up/pub/Webdocs/DE2_UserManual.pdf

